Carburetion is a science. To fully understand how a carburetor works, what the variations and exceptions are, and how to properly and correctly match a carburetor to a particular engine means experiencing thousands of carburetors and their applications over many years. Several companies specialize in carburetors. Just carburetors. And they've been doing it for years. They could regale you for hours with carburetor stories. There is no possible way that we can make you expert within these pages. What we can do is show you the basics and give you hints on rebuilding and adjusting your carburetor – and we've been doing this for years; see our series on carburetors, Orest's Carburetor School, beginning in the February 2011 issue of *Skinned Knuckles* and continuing through the October 2012 issue. Plus, throughout the years we have looked at almost every type of carburetor used on our old cars and trucks. Let's very briefly cover what a carburetor is and what the principles of its operations are. Liquid gasoline will not burn in our engines. Our cars and trucks were designed to use a mixture of vaporized fuel and air. The ratio of gas to air is critical. Too much air and the mixture is known as 'lean,' and too little air and the mixture is 'rich.' Neither one is good for optimum performance and can actually hurt the engine. In an ideal situation, the ratio of air to gasoline would be 14.7 parts air to 1 part gasoline. That's ideal, but in practice it doesn't happen. Whereas gasoline's Stoichiometric Fuel/Air Mixture is 14.7:1, ethanol is 9:1. Ethanol already carries oxygen in the alcohol molecule that's why, when adding it to gasoline the fuel is now called 'oxygenated.' The percentage of alcohol mixed with gasoline automatically alters the 14.7 Stoichiometric Fuel/Air Mixture. Plus, of course, that figure assumes an absolutely 100% efficient engine. That doesn't exist. Essentially, there are three primary types of carburetors: the downdraft carburetor, the updraft carburetor and the sidedraft carburetor. The downdraft carburetor, found primarily on cars and trucks after the early 1930s, sits above the intake manifold, and the fuel/air mixture feeds downward into the intake manifold. The sidedraft carburetor is not commonly found on automobile engines. Today it is fairly often used for small engines like lawn mowers or on special-application auto engines. The updraft carburetor was a very common application for cars and trucks before the early '30s, but was used on quite a number of truck applications up into the 1950s. It would be mounted below the intake manifold and often below the gasoline source. Updraft, sidedraft, or downdraft has little to do with how the fuel gets to the carburetor. It was not unusual, for example, for fuel to reach an updraft carburetor directly by gravity (Model T Fords and Model A Fords are two very good examples), through an intermediary fuel reservoir (a vacuum tank is a good example) or through a mechanical, and later an electric, fuel pump. All systems worked, and all had their own strengths and weaknesses. Starting an engine with an *updraft* carburetor should entail use of the choke rather than the throttle. A rich mixture is required to start a (cold) engine. By pumping the accelerator pedal, gas flows into the carb body, and if the amount of fuel is too great, it will run out the overflow or directly out of the air intake throat. This could be dangerous, especially if an air cleaner or flame arrestor is mounted on the throat of the carburetor. That 'puddle' of gas could ignite in the case of a backfire through the carburetor. The better choice is to use the choke in starting. By closing the choke butterfly, the rich mixture is sucked into the combustion chamber providing a very rich mixture for initial starting. This applies to an updraft or sidedraft carburetor. With a downdraft carb, the excess fuel flows into the intake manifold. Flooding could occur, but the likelihood of a fire is greatly reduced. When you strip away all of the glitz of a carburetor, it is a relatively simple device based on Bernoulli's principle that the faster air moves, the lower its static pressure and the higher its dynamic pressure. Sounds complicated. Let me give you a few examples of Bernoulli's theorem: The wing of an airplane is curved in such a way that the air passing over it moves at a faster rate than the air passing under it. The air pressure on top of the wing is lower than under it. The higher pressure keeps the plane up. Another example: in a river the flow of water is leisurely, The normally leisurely pace of the river is disrupted by a narrowing. The same amount of water passes through the narrow area as in the wider areas, but the flow is much faster. until it comes to a narrow spot. There the water is forced to flow through a narrower passage and the flow speeds up. As it passes the narrow area it slows down again to its normal leisurely pace. Okay. How does that apply to a carburetor? A carburetor has an obstruction similar to that in the river. It is called the venturi. As the slow moving air enters the carburetor it is suddenly compressed as it passes through a narrower opening in the air tube. As it passes through that narrow opening, the air speed increases. The same amount of air passes into the narrowed portion as was in the wider section. The speed increases until it passes through the narrow passage, and as it enters the wider section the speed slows down but the pressure increases. A vacuum is formed as the air fills the space, and that vacuum 'sucks' fuel from a small tube (the main discharge jet) in the venturi and mixes it with the air. The main discharge jet's other end fits in a reservoir of fuel which is continuously filled through a float system. The amount of air allowed into the venturi is controlled by a butterfly valve known as the 'choke.' The more air, and the faster that it passes through the narrow segment of the venturi, the more fuel that the air flow 'sucks' out of the main discharge jet. A second butterfly valve – the throttle - allows more or less air/fuel mixture into the intake manifold of the engine. Despite the amount of air coming into the venturi, the fuel is still a measured amount. At idle, a separate circuit takes over supplying the minimal amount of fuel needed for idle. Upon rapid acceleration, a separate circuit, called an accelerator pump, forces more fuel into the system until the air/fuel mixture can catch up and maintain the added demand. The carburetor is a lot more complicated than that, consisting of metering valves, air tubes, check valves, accelerator pumps, needle valves and much more, but the basic principle remains: the flow of air mixes with a certain amount of fuel and converts it to a vapor which is burned in the cylinders. Each engine varies. Each has its own requirement for the amount of air/fuel that it needs to use effectively. That is the reason that there are thousands of variations in brands, models and specifications of carburetors. Let's get several fallacies out of the way immediately. First of all, just because a carburetor fits the mounting flange does not mean that it is the right carburetor for that engine. Second, the flange or bore opening does not have anything to do with the venturi size. Finally, even It is evident in this photo that the venturi size and the bore size differ. The bore size is the opening in the flange (A) while the venturi is a narrowing in the bore (B). Throttle disc is removed for photo clarity. though a particular brand and model of carburetor is specified for a particular engine, the internal components of that carburetor (venturi size, jet sizes, float levels, etc.) could have been designed for a similar engine and may not be correct for your engine. There are five standard updraft flange one-barrel sizes (plus a number of lesser-used variations), but as indicated, the flange size is not the only, or even the primary, indicator that a carburetor is correct for a particular engine. ## FLANGE SIZES (from The Gasoline Motor by P.M. Heldt, 1920) | S.A.E Siz | e Center-to-Cen
Mounting Hole | ter Bore Size | Carb
Size | |-----------|----------------------------------|---------------|--------------| | 1/2" | 1 11/162 | 1 1/4" | | | 5/8" | 1 13/16" | 1 7/16" | | | 3/4" | 2 1/8" | 1 5/8" | | | 7/8" | 2 1/4" | 1 3/4" | | | 1" | 2 3/8" | 1 7/8" | #1 | | 1-1/8" | 2 3/8" | 2" * | 77.1 | | 11/4" | 2 11/16" | 2 3/16' | #2 | | 1-3/8" | 2 11/16" | 2 5/16" * | "- | | 11/2" | 2 15/16" | 2 1/2" | #3 | | 13/4" | 3 5/16" | 2 13/16" | #4 | | 2" | 3 9/16" | 3 1/2" | #5 | **BOLD TYPE - standard sizes** * interpolated There is a greater variation in downdraft carburetors, single, two, and four barrel flange sizes and configurations. As indicated, the flange size has little to do with the venturi size (although it is obvious that if the engine requires a 2½" venturi, a size #1 carburetor will not suffice). There are air consumption charts which determine, based on the cubic displacement of the engine and RPM, how much air is required for optimum performance. (See pages 40-42) The volumetric efficiency is determined by the size of the engine (cu. in.) and by RPM. Merely putting a larger carburetor on the engine is not going to necessarily improve performance. In addition to flange size, there is another variable that has to be considered. Early auto manufacturers - let's say, up to about 1930 or so - used a variety of bolt patterns. So although the flange size might be correct, the bolt pattern may be less-than-common. Often, because of space limitations or other engineering demands, adapter flanges were used to mount the carburetor in a vertical, horizontal, 45° or other position. After 1930 bolt patterns became more standardized. There are a number of reasons for replacing, rather than rebuilding, a carburetor. Physical damage is a main one. If any part of the casting is broken, cracked or otherwise damaged, it should be replaced. Modifications to the engine is another reason. Increasing the cubic capacity of the engine requires that the carburetor be re-engineered to work properly with those modifications. Changing or replacing an engine with a different size or style is another reason. You cannot properly guess at what size carburetor you need. I'll repeat, "Carburetion is a science." It is time to toss the problem into the laps of the experts. Generally the simplest way to solve a carburetor problem is to purchase a new, correctly sized and constructed carburetor to fit your engine. A lot of factors will be considered: engine size, engine use, type of carburetor required, and flange size. The flange size is often one of the least important factors. A variety of adaptors are available, or can be constructed, to fit a certain carburetor to an intake manifold. Before we get to the types and options of a replacement carburetor, let's look at the most common problems associated with 'fuel delivery.' Please keep in mind that "most carburetor problems are electrical." Sure sounds like an oxymoron. Carburetors are mechanical, and as such are (generally) either good or bad. But if inadequate electricity reaches the spark plugs, the fuel supplied by the carburetor will not burn. Before blaming the carburetor, everything, I mean everything, within the electrical circuit must be checked and found to be in perfect condition. Please re-read the second half of <u>From My Perspective</u> in the May issue of *SK*. I, too, despite the warnings from Ron Hewitt of Daytona Parts Company, felt that I had adequately checked my electrical system and blamed the carburetor. The problem(s) were electrical! If the problems are narrowed down to fuel, the most common difficulty is inadequate fuel delivery. It might be a dirty or plugged gas filter, or a dirty filter screen in the fuel pump, or a defective diaphragm in the fuel pump, or dirt in the carburetor, or a loose carburetor allowing too much air to mix with the gasoline. Essentially minor problems. Many years ago I was on an antique car tour which took us along a dry river bed with roads extremely rough and rutted. All of the cars were well bounced around. That evening, on the way to the club's banquet, my engine died. It would start right up but would not run. I naturally thought of the worst possible problems, but my (automotively) naïve daughter suggested that the bouncing around may have caused the problem. I ignored her. It turned out that she was absolutely correct. Some crud in the gas tank must have broken loose and something plugged the high speed jet. The car would start because the idle jet was clear, but the blockage prevented the second jet from operating. Before blaming the carburetor, re-read the article on fuel pumps in the April issue of SK. Check to be sure that adequate fuel is being delivered by the fuel pump to the carburetor. Then, if all proves well with the fuel pump, check that the mounting bolts on the carburetor are tight and that the gasket between the carb flange and the intake manifold is not leaking. If it has been crushed or cracked, too much air will enter the system causing a lean condition. Check that the air cleaner is clean. Too much dirt or dust will prevent adequate air from entering the carburetor. Finally, if the jets are accessible from the outside of the carburetor, remove each and check that they are clear (do not use a drill bit to clean the jet because it is too easy to change the jet's size by mistake). If none of the above solutions work, you may want to try to open the carburetor and try to A Daytona Parts Company rebuilding kit will contain everything you need to rebuild your particular carburetor. Since there may be variations available for a particular model carb, there may be more than one type of part in each kit so that you have the right part for your carburetor. locate the problem. Before you begin to disassemble the carburetor though, purchase a rebuilding kit from Daytona Parts Company (see their ad on page 43). Many of the gaskets are extremely thin and delicate and will tear or break when removed. You will need new gaskets and possibly an improved needle valve and seat which will be found in the rebuilding kit. Check the float bowl first for signs of dirt or rust. If you find evidence of loose rust or other dirt particles, there is a very good chance that a small piece has entered one of the tiny passages within the carburetor and is impairing the carb's operation. Follow the precise directions that came with the rebuilding kit. Disassemble and clean every single part. Make careful notes as you proceed. The carburetor contains many parts that can easily be lost or incorrectly re-installed. Compressed air will clear the passages within the carburetor. Clean everything! Don't take any shortcuts. If you cannot remove a jet or other fitting within the carburetor, don't force it. You will Editor's note: I had a discussion with Mr. Hewitt of Daytona Parts Company some time ago, and I asked him if those 'frozen' brass fittings could be removed. "Not a problem for us," replied Ron. "After disassembling everything that we can, we use a very powerful ultrasonic cleaner which removes even dirt and corrosion which cannot be seen by the naked eye. Generally that solves the problem. If not, we can use extreme cold or localized heat to free the part. We'll get it out." cause more damage. The brass screws and jets within the carb are delicate, and trying to force them with a screwdriver will strip the slot but will not get the screw removed. It is a job for a professional carburetor shop; one with knowledge and experience with your type of carburetor. That's fine, for as far as it goes. But what if the car is missing a carburetor, or the existing carburetor has problems which you are not able to remedy? As the carburetors age - and many of them are already 70, 80 or 90 years old, replacement parts are getting more difficult ro locate. The early zinc cast (white metal or pot metal castings) simply wear out. When you stop to think about the thousands of start-up auto manufacturers which abounded in the 'teens and 'twenties, many of which were building cars on a supertight budget, they often used less than top-quality parts. Carburetors were a perfect example. Editor's note: In January, 1931 Chrysler introduced a new model 6-cylinder car. They called it the CM series. When first introduced the engine was fitted with a Stromberg UR-2 carburetor. Stromberg was an old and respected name in carburetors, but they were as were many other manufacturers - experimenting with die-casting. The science of metallurgy was not nearly as far a long as it would be just a few years later, and many problems began to show up with the white metal parts. Today we realize that 'pot metal' does not have the longevity or stability of cast iron, bronze or brass. But at the time it was a quick way to manufacture parts inexpensively. Within just a couple of months, Chrysler switched from the Stromberg UR-2 carburetor to a cast iron Carter BB1a carburetor. The January 1931 edition of the CM owner's manual pictured the Stromberg carb. I know of one car built in April 1931 which was fitted with a Stromberg. The April 1931 edition of the CM owner's manual pictured the Carter carburetor, and my own CM (built in May 1931) was fitted with the Carter. As many of the early die-cast carburetors age, the metal becomes unstable, brittle, warps, cracks or becomes porous. They are simply unsafe to use. Cast iron, too, has a tendency to crack. Welding is not generally a practical solution. Even better quality brand-name carburetors are suffering today from the inability to get parts. A perfect example is the Carter BB1a updraft carburetor. It is a great carb. It's highly in demand because of its reliability, and it is often used as a replacement carburetor for many applications (the BB1 was made in a tremendous variety of internal configurations to suit the engine to which it was going to be fitted). The accelerator pump in the BB1 is metal - brass - and replacements are simply not available. That's one of the reasons that a Carter BB1 updraft (the BB was also made as a downdraft carburetor for years) is in such high demand and often commands unrealistically high prices. That is one of the very serious drawbacks in attempting to replace an original carburetor with the same make/model. If the carb from your car has begun to suffer from 'old age' ailments - cracking or disintegrating pot metal, or broken hard-to-find parts, etc, those carburetors that you might find probably have the same or similar problems, and if not, more than likely command extremely high prices. What is the answer? A new replacement carburetor. As stated earlier, just because a carburetor fits the mounting flange does not mean that it will work efficiently with your engine. The carburetor has to have the correct air flow standards, the correct jet sizes and the ability to provide the proper amount and balance of fuel and air to the engine at all RPMs. An ideal universal replacement carburetor will have an adjustable high-speed jet and a clamp-type assembly on the throttle shaft. With the adjustable main jet, the air/gas mixture can be modified for the best operation on the engine. Again, you will not be satisfied with a small, low-capacity carburetor, even if it has an adjustable main jet, if you try to use it on a larger engine which requires more air than the venturi of the carb can supply. The clamp-type assembly provides much greater flexibility in fitting a universal carburetor to a variety of automotive throttle set-ups. An adjustable main jet (arrow) is an extremely desirable feature on a universal replacement carburetor. This is where I (we) turn to a carburetor expert like Ron Hewitt. Ron owns Daytona Parts Company; he lives and breathes carburetors. He has probably forgotten more than I will ever know about them. My recommendation is that you discuss your carburetor problem with him. He will hit you with a bunch of questions: type of car, type of engine, cubic displacement, special use (is the vehicle used for street driving? racing? heavy hauling?) and others. Then he can recommend a suitable replacement carburetor based on your engine's needs. Generally, updraft carburetor replacements are available for displacements up to about 300 cu. in. In some cases, a special mounting flange might have to be used because of an oddball flange size or mounting configuration, but that's the exception rather than the rule. rather than the rule. Daytona Parts Company is a distributor of new Zenith carburetors. Zenith has been in the carburetor business about 100 years, and has always been considered a quality product. A new Zenith updraft carburetor is probably available for your application. And the cost will be somewhere around what a complete professional rebuild would cost. We are advocates of authenticity. It is our credo and our hallmark. But safety pre-empts everything else. If a carburetor (or fuel pump, or fuel line, or gas tank) leaks or is defective, it must be repaired or replaced. There are no two ways about it! A gasoline fire is disastrous. It happens fast, it happens hot, and there often isn't time to react and save the car (not to mention lives). To this point, we have been discussing (primarily) updraft carburetors. Almost everything written about updraft applies to the later downdraft carburetors as well. With newer engines there are often many more variables that can be engineered into a downdraft carburetor: multi-barrels, vacuum assists, even starter switch assemblies can be incorporated onto the carb. But the rules remain the same: how big (cu. in.) is the engine, what is the rated horsepower, what RPMs does it run at, how much air does it require for maximum efficency and proper operation? Then, of course, come flange size, bolt configuration, and all of the other things that we have been discussing for updrafts. Zenith makes a line of replacement downdraft carburetors, too. Again, don't try to just find something that fits. Ask Daytona to help determine your specific needs. It will save a lot of aggravation in the future. Okay, here it gets a little technical. As indicated, two major factors are used in determining the correct carburetor. Engine revolutions per minute (RPM) and cubic displacement in inches of the engine (cu. in./CID) Most likely the displacement can be found in the owner's manual. If the cu. in. is not given, the bore and stroke will be supplied, or can be found in a copy of Motor's Manual or Chilton's Manual. Please refer to the charts on the following pages. One page is for four (and eight) cylinder engines, and the other is for six (and twelve) cylinder engines. Locate the cylinder bore size in the column on the left side of the page, and the stroke along the top of the page. Where the two columns intersect is the cubic displacement in inches. The third chart offers air consuption. Locate the cu. in. displacement in the left column, the rated RPM across the top and where the columns intersect is the air consumption. The chart is rated at 75% Volumetric efficiency. It is extremely unlikely that any engine is going to approach the 100% efficiency figure. Typically, a mid-1920s and later engine will be somewhere around 75% as indicated on the chart which follows... A formula for determining the needed cubic feet per minute of air is: CFM= (cu. in. x RPM)/(1728 x 2) x VE CFM represents Cubic FEET per minute cu. in. represents Cubic INCHES RPM revolutions per minute (intake is on every other revolution of the crankshaft) To convert cubic INCHES to cubic FEET means a factor of 1728 (a cubic foot is 12"x12"x12" = 1728 cubic inches), and the number 2 represents the fact that intake is only on every other rotation of the crankshaft. Let's consider a 1928 Buick 6 cylinder engine with a bore of 3½" and a stroke of 5". According to the chart on page 41, the displacement is 289 cu. in. The engine is rated at 3,200 RPM. The printed chart assumes a volumetric efficiency of 75% The required cubic feet of air for that engine would be: (289×3200) divided by (1728×2) times 75% $(924,800/3456) \times .75 = 200.7$ cu. ft. per minute 5.K. Please continue to the piston displacement and air consumption/flow charts on the following pages. Daytona Parts Company 1191 Turnbull Bay Road New Smyrna Beach, Fl. 32168 Phone: 386-427-7108 www.daytonaparts.com mail@daytonaparts.com > Carburetor rebuild kits, Daytona Float Valves, Restoration, Replacement Carburetors ## Piston Displacements in Cubic Inches for 4-Cyl. Motors For 8-Cylinder Motors, Multiply Given Displacement by 2 | _ | | 0000 | 0 # O = | 0000 | 247- | 8000 | 0000 | 0400 | กออกา | |----------|-------------------|--|---------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------| | | 7 | 155 | 198
214
232
251 | 33086 | 330,42 | 453
470
496
523 | 550
578
606
635 | 669
772
755 | 792
859
929
1002 | | | 63% | 132
146
160
175 | 207
224
242 | 260
279
298
318 | 339
361
406 | 429
454
478
504 | 530
557
584
613 | 641
671
701
732 | 763
828
896
966 | | | 61% | 128
140
154
169 | 184
199
216
233 | 250
268
287
307 | 327
348
369
391 | 414
437
461
485 | 511
536
563
590 | 618
646
675
705 | 735
798
863
930 | | | 674 | 135
135
148
162 | 177
192
207
224 | 241
258
276
295 | 314
355
376 | 398
420
443
467 | 491
516
541
567 | 594
621
649
678 | 707
767
829
895 | | | œ | 118
130
143
156 | 170
184
199
215 | 231
248
265
283 | 302
321
340
361 | 382
403
448
448 | 471
495
520
545 | 570
596
623
651 | 679
736
796
859 | | | 578 | 115
127
140
152 | 166
180
195
210 | 226
243
260
277 | 295
333
353 | 374
395
416
439 | 461
485
509
533 | 558
584
610
637 | 664
721
780
841 | | | 5% | 113
124
137
149 | 163
176
191
206 | 221
237
254
271 | 289
307
326
346 | 366
386
408
429 | 452
475
498
522 | 546
572
597
623 | 650
706
763
823 | | | 55% | 122
134
146 | 159
173
187
201 | 217
232
249
265 | 283
301
319
338 | 358
378
399
420 | 442
464
487
511 | 535
559
583
610 | 636
690
747
805 | | | 57.2 | 108
119
131
143 | 156
169
183
197 | 212
227
243
260 | 277
294
312
331 | 350
370
390
411 | 432
454
476
499 | 523
547
571
596 | 622
675
730
787 | | INCHES | 53% | 106
116
140 | 152
165
178
192 | 207
222
237
253 | 270
287
305
323 | 342
361
381
401 | 444
444
465
488 | 511
534
558
583 | 608
660
713
769 | | | 5.7 | 103
114
125
136 | 148
161
174
188 | 202
217
232
248 | 284
281
298
316 | 334
353
372
392 | 412
433
455
477 | 499
522
545
569 | 594
644
697
752 | | E IN | 51/8 | 122 | 145
157
170
183 | 197
211
226
242 | 258
274
291
308 | 326
344
363
383 | 444
465 | 487
509
532
556 | 580
629
680
734 | | STROKE | 3 | 98
108
119
130 | 141
153
166
179 | 192
206
221
236 | 251
267
284
301 | 318
336
354
373 | 393
413
433
454 | 475
497
519
540 | 566
614
664
716 | | ST | 47,8 | 96
106
116
126 | 138
150
162
175 | 188
201
215
229 | 245
261
277
293 | 310
328
346
364 | 383
402
422
443 | 463
485
506
529 | 551
598
647
698 | | | 43% | 252
123
123
123
123
123
123
123
123
123
12 | 134
146
158
170 | 183
195
210
224 | 239
269
286 | 302
319
337
355 | 373
392
411
431 | 451
472
494
515 | 537
583
630
680 | | | *
% | 91
100
110
120 | 131
142
153
165 | 178
191
204
218 | 233
247
262
278 | 294
311
345 | 382
382
400
420 | 440
460
480
502 | 523
568
614
662 | | | 1/2 | 88
97
107
117 | 127
138
149
161 | 173
186
199
212 | 226
241
255
271 | 286
302
319
336 | 353
371
390
409 | 428
447
467
488 | 509
552
597
644 | | | 43% | 86
95
104
114 | 124
134
145
157 | 168
181
193
206 | 234
248
263
263 | 278
294
310
327 | 344
361
379
397 | 416
435
454
474 | 495
537
581
626 | | | 414 | 83
101
110 | 120
130
141
152 | 164
176
188
200 | 214
227
241
256 | 270
286
301
317 | 334
351
368
386 | 404
422
441
461 | 481
522
564
608 | | | 41/8 | 89
98
107 | 117
127
137
148 | 159
170
182
195 | 207
221
234
248 | 262
277
292
308 | 324
340
357
374 | 393
410
429
448 | 467
506
548
590 | | | 4 | 79
87
95
104 | 1123
123
143
143 | 154
165
177
189 | 201
214
227
241 | 255
269
284
299 | 314
330
346
363 | 380
398
416
434 | 452
491
531
573 | | | 378 | 52220 | 110
119
129
139 | 149
160
171
183 | 195
207
220
233 | 247
260
275
289 | 304
320
336
352 | 368
385
403
420 | 438
476
514
555 | | | 33% | 47
88
97 | 106
115
124
134 | 144
155
166
177 | 189
201
213
226 | 239
252
286
280 | 295
309
325
340 | 356
373
390
407 | 424
460
498
537 | | | 35/8 | 17
86
86
94 | 103
1120
130 | 140
150
160
171 | 182
194
206
218 | 231
244
257
257 | 285
299
314
329 | 345
360
377
393 | 410
445
481
519 | | | 31/2 | 2882 | 99
107
116
125 | 135
145
156
156 | 176
187
199
211 | 223
235
248
261 | 275
289
303
318 | 333
348
364
380 | 396
430
465
501 | | | 33% | 8838 | 95
104
112
121 | 130
139
149
159 | 170
180
191
203 | 215
227
239
252 | 265
279
292
306 | 321
336
351 | 382
414
448
483 | | | 374 | \$212 | 92
100
108
116 | 125
134
144
153 | 163
174
184
195 | 207
218
230
243 | 255
268
281
295 | 309
323
338
352 | 368
399
431
465 | | | 378 | 824.88 | 89
96
104
112 | 120
129
138
147 | 157
167
177
188 | 199
222
233
233 | 245
258
271
284 | 297
311
325
339 | 354
384
415
447 | | | 8 | 82282 | 288
100
107 | 115
124
133
142 | 151
160
170
180 | 191
202
213
224 | 248
248
280
272 | 288
312
325
325 | 339
368
398
429 | | Cylinder | Bore in
Inches | 72%27% | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 20000
200000 | 4444 | 4444 | 2222 | 20000
20000 | 66,5% | | ð | P. P. | 2000 | ~~~~ | CV CV CV CV | 4444 | | <u> </u> | | | Piston Displacements in Cubic Inches for 6-Cyl. Motors For 12-Cylinder Motors, Multiply Given Displacement by 2 | Cylinder | | | | | | | | | | | | | | | S | STROKE | KE IN | | INCHES | 100 | | | | - | | | | | | | | |----------|------|------|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-------|-------|---------|--------|---------|--------|--------|--------|--------|--------|-------|--------------|------|------|------|------|-------|-------|------| | Inches | 3 | 37/8 | 3% | 33% | 375 | 3% | 37% | 378 | 4 | 47/8 | 4% | 43% | 41% | 45% | 4 4 | 8/4 | 5 548 | 8 54 | 4 53/8 | 8 51% | 55% | 8 53% | 8/5 | 9 | 61/2 | 7.9 | 149 | 7 | 71/2 | 77 | 73% | | 2% | 88 6 | 38 | 96 | 65 | 103 | 107 | 110 | 114 | 118 | 122 | 125 | 129 | 133 | 136 | 140 | 144 | 147 151 | 1 155 | 5 158 | 8 162 | 2 166 | 691 9 | 173 | 177 | 184 | 191 | 199 | 206 | 214 | 221 | 228 | | 37% | 101 | 111 | 116 | 130 | 176 | 120 | 771 | 170 | 130 | 5 : | 138 | 147 | | 18.5 | | | | | 2 | | | _ | | _ | | 211 | 219 | 227 | 235 | 244 | 251 | | 27% | 117 | 122 | 127 | 131 | 132 | 141 | 144 | 120 | 155 | 141 | 751 | 120 | | | | | | | 1 | | | | _ | | | 232 | 241 | 249 | 258 | 267 | 276 | | 2 | | ! | : | : | 3 | | 2 | - | 007 | 101 | 001 | 2 | | | _ | | | | | _ | | | | | | 253 | 263 | 273 | 283 | 293 | 302 | | e | 127 | 132 | 138 | 143 | 148 | | 159 | 164 | 170 | 175 | | | | | | | | | | | | | | | | | 200 | 200 | 900 | | * | | 31/8 | 138 | 144 | 150 | 156 | 161 | | 173 | 178 | 184 | 190 | | | | | | _ | | _ | _ | | | | | _ | | | 987 | 161 | 200 | 518 | 373 | | 3% | 149 | 155 | 162 | 168 | 174 | | 186 | 193 | 199 | 205 | | | | | | _ | | | | | | | | | | | 326 | 377 | 55 | 345 | 356 | | 33% | 161 | 168 | 174 | 181 | 188 | 194 | 201 | 208 | 215 | 221 | 228 | 235 | 242 | 248 2 | 255 2 | 262 20 | 268 275 | 5 282 | 2 289 | 9 295 | 302 | 309 | 315 | 322 | 336 | 349 | 363 | 375 | 380 | 3/3 | 385 | | | | | | | | | • | | | | | | | | - | | | | _ | | | | | | | | - | 3 | 3 | 3 | 210 | | 2% | 173 | 180 | 188 | 195 | | | 216 | 224 | 231 | 238 | 245 | | | | | | | | | _ | | | | | | | 390 | 404 | 418 | 473 | 447 | | % | 186 | 194 | 201 | 500 | 216 | 224 | 232 | 240 | 247 | 255 | 263 | 271 | 278 2 | 286 2 | 294 3 | 302 30 | 309 317 | 7 325 | 5 333 | 3 340 | 348 | 8 356 | 364 | 371 | 387 | 402 | 418 | 433 | 449 | 465 | 480 | | 375 | 25 | 32, | 215 | 224 | 500 | | 248 | 256 | 265 | 273 | 282 | | | | - | | | | | | | | | - | | _ | 447 | 464 | 480 | 496 | 513 | | 8/6 | 717 | 177 | 3 | 63 | | | 997 | 4/7 | 583 | 787 | 301 | | | | | | | - | | | | | _ | _ | | | 478 | 495 | 514 | 531 | 549 | | 4 | 226 | 236 | 245 | 254 | 264 | | 283 | 292 | 302 | 311 | 320 | | | | 7.00 | | | | | | | | | | | | 600 | 600 | 773 | 373 | 202 | | 478 | 241 | 251 | 261 | 271 | 281 | | 301 | 311 | 321 | 331 | 341 | | | 000 | | | | | | | | | | | | | 2 2 | 2,5 | 581 | 200 | 601 | | 7. | 255 | 266 | 276 | 287 | 298 | 308 | 319 | 330 | 341 | 351 | 362 | 372 | 383 | 394 4 | 404 | 415 4 | 426 436 | 6 447 | 1 458 | 8 468 | 8 479 | 9 490 | 200 | 511 | 532 | | 575 | 896 | 617 | 638 | 689 | | 4% | 7/1 | 282 | 293 | 305 | 316 | | 338 | 350 | 361 | 372 | 383 | | | | | | | | | | | | | | | 586 | 609 | 631 | 653 | 677 | 700 | | 4% | 286 | 298 | 310 | 322 | 334 | 346 | 358 | 370 | 382 | 394 | 406 | 418 | | | | | | | | | | | | | | | 644 | 877 | 609 | 716 | 740 | | * 3 | 302 | 315 | 328 | 340 | 353 | 365 | 378 | 391 | 403 | 416 | 428 | 441 | 454 | 499 | 4 64 | 161 | 504 517 | 7 529 | 9 542 | 2 554 | 4 567 | 7 580 | 592 | 605 | 630 | 655 | 089 | 706 | 730 | 756 | 781 | | 7.4 | 335 | 350 | 364 | 378 | 3/2 | 380 | 420 | 417 | 475 | 439 | 452 | 465 | | _ | | | | | | | | _ | _ | | | | 718 | 744 | 770 | 798 | 825 | | : | 3 | 3 | 5 | 0 | 720 | 2 | 22 | 12 | 110 | 704 | 4/0 | 2 | | _ | | | | | | | | | | | | | 756 | 784 | 812 | 840 | 868 | | 2 | 353 | 368 | 383 | 398 | 412 | 427 | 445 | 457 | 471 | 486 | 105 | 515 | | | | | | | | | | | | | | | 795 | 825 | 854 | 884 | 913 | | 23 | 300 | 38/ | 407 | 418 | 433 | 446 | 404 | 489 | 495 | 511 | 526 | 542 | 557 | 573 5 | 9 889 | 9 603 | 619 634 | 14 650 | 99 0 | 189 5 | 1 696 | 6 712 | 727 | 743 | 774 | 805 | 836 | 998 | 897 | 928 | 959 | | 23% | 400 | 426 | 447 | 450 | 474 | 404 | 48/ | 500 | 270 | 920 | 552 | 268 | | | _ | | | | | | | _ | | _ | | | 877 | 606 | 941 | 975 | 1008 | | * | | - | 2 | 100 | 2 | - | 210 | 175 | 240 | 700 | 2/3 | 230 | | | | | | | | | | - | | _ | | | 919 | 953 | . 987 | 1021 | 1056 | | 5% | 428 | 445 | 464 | 481 | 499 | 516 | 535 | 553 | 570 | 588 | 909 | | | | | | | | | | | - | | | | | 640 | 800 | 1033 | 10/01 | 1106 | | 25% | 448 | 466 | 485 | 504 | 523 | 240 | 655 | 578 | 597 | 615 | 634 | 653 | 119 | 069 | 709 7 | 728 7 | 746 765 | 55 784 | 14 802 | 2 821 | | | 100 | | | | 1007 | 1044 | 1083 | 1110 | 1156 | | 2% | 468 | 487 | 206 | 526 | 546 | 595 | 585 | 604 | 624 | 643 | 662 | | 16 | | | _ | - | | | | | | | | | | 1052 | 1092 | 1130 | 1170 | 1200 | | 2% | 488 | 200 | 529 | 550 | 570 | 280 | 610 | 631 | 159 | 671 | 692 | | | | | | | | | | 916 9 | 6 936 | 6 957 | 716 | 1018 | 1059 | 1099 | 1140 | 1180 | 1211 | 1261 | | 9 | 509 | | 552 | 573 | 595 | 615 | 636 | 658 | 679 | 780 | 722 | 743 | | | 3_13.15 | | | | | | - | | | - | | | 1160 | 7011 | | 0000 | | | 67% | 553 | 575 | 865 | 621 | 645 | 199 | 069 | 713 | 736 | 760 | 782 | 805 | 828 | 852 8 | 875 8 | 897 9 | 920 944 | H 967 | 7 990 | 0 1014 | 4 1038 | 8 1060 | 01084 | 1106 | 1152 | 118 | 1245 | 1292 | 1330 | 1384 | 1470 | | 6% | 598 | 2215 | 647 | 672 | 697 | 722 | 747 | 772 | 196 | 821 | 846 | 871 | | | 20.82 | - | heel | - | _ | | - | | | - | | | 1346 | 1395 | 1445 | 1495 | 1544 | | ** | 644 | | 969 | 724 | 750 | 111 | 804 | 831 | 828 | 885 | 911 | 938 | | - | - | 300 | Port. | - | - | | - | - | | ALC: UNKNOWN | | | 1452 | 1505 | 1558 | 1612 | 1666 | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | | | | 4 | | | | | | | AIR CONSUMPTION CHART | | | | | | | | | | AIF | CO | NSU. | MPT | ION | CHA | RT | | | | | | |-----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Piston | | | R | EVOLU | TIONS | PER | MINU | TE | | | Piston | 3.51 | | R | EVOLU | TIONS | PER | MINU | TE | | | | Displ.
Cu. In. | 1800 | 2000 | 2200 | 2400 | 2600 | 2800 | 8000 | 3200 | 8400 | 8600 | Displ.
Cu. In. | 1800 | 2000 | 2200 | 2400 | 2600 | 2800 | 8000 | 3200 | 3400 | 3600 | | 175 | 68 | 76 | 84 | 91 | 99 | 106 | 114 | 121 | 129 | 137 | 425 | 166 | 185 | 203 | 221 | 239 | 258 | 276 | 295 | 818 | 882 | | 180 | 70 | 78 | 86 | 94 | 102 | 109 | 117 | 125 | 133 | 141 | 430 | 168 | 187 | 206 | 224 | 248 | 262 | 280 | 302 | 318 | 336 | | 185 | 72 74 | 80 | 88 | 96 | 104 | 112 | 120 | 129 | 137 | 145 | 485 | 172 | 188 | 210 | 229 | 248 | 267 | 286 | 305 | 324 | 344 | | 195 | 76 | 85 | 93 | 102 | 110 | 119 | 127 | 135 | 144 | 152 | 445 | 174 | 198 | 212 | 231 | 251 | 270 | 289 | 308 | 328 | 348 | | 200 | 78 | 87 | 96 | 104 | 113 | 122 | 130 | 139 | 148 | 156 | 450 | 176 | 195 | 214 | 234 | 254 | 274 | 292 | 312 | 332 | 351 | | 205 | 80 | 89 | 98 | 107 | 116 | 125 | 133 | 143 | 151 | 160 | 455 | 178 | 198 | 217 | 237 | 257
260 | 277 280 | 295 | 316
320 | 336
340 | 355
360 | | 210
215 | 82
84 | 91 | 100 | 109 | 118 | 131 | 140 | 150 | 159 | 168 | 465 | 182 | 202 | 222 | 242 | 262 | 288 | 303 | 323 | 843 | 364 | | 220 | 86 | 95 | 105 | 114 | 124 | 134 | 143 | 153 | 162 | 172 | 470 | 184 | 204 | 224 | 245 | 265 | 286 | 806 | 326 | 347 | 367 | | 225 | 88 | 98 | 107 | 117 | 127 | 137 | 146 | 156 | 166 | 176 | 475 | 186 | 206 | 227 | 247 | 268 | 289 | 309 | 330 | 350 | 371 | | 230 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 480 | 188 | 208 | 229 | 250 | 270 | 291 | 312 | 833 | 354 | 375 | | 235 | 92
94 | 102 | 112 | 122 | 133 | 143 | 153 | 163 | 173 | 184 | 485 | 190 | 211 | 231 | 253 | 273 | 294 298 | 315 | 336
340 | 358
362 | 379
383 | | 245 | 96 | 106 | 117 | 128 | 138 | 149 | 160 | 170 | 181 | 191 | 495 | 198 | 215 | 286 | 258 | 279 | 801 | 822 | 848 | 365 | 387 | | 250 | 98 | 108 | 119 | 130 | 141 | 152 | 163 | 174 | 184 | 195 | 500 | 195 | 217 | 239 | 260 | 282 | 808 | 326 | 347 | 369 | 390 | | 255 | 100 | 111 | 122 | 133 | 144 | 155 | 166 | 177 | 188 | 199 | 505 | 197 | 219 | 241 | 263 | 285 | 807 | 329 | 351 | 872 | 394 | | 260 | 102 | 112 | 124 | 186 | 147 | 158 | 169 | 181 | 192 | 203 | 510
515 | 200 | 222 | 244 | 266 | 288 | 310 | 332 | 354 | 376
380 | 398
402 | | 265
270 | 103 | 115 | 126
129 | 138 | 149
152 | 161 | 176 | 188 | 199 | 211 | 520 | 204 | 225 | .248 | 271 | 294 | 316 | 338 | 361 | 383 | 406 | | 275 | 107 | 119 | 131 | 148 | 155 | 167 | 179 | 191 | 203 | 214 | 525 | 206 | 228 | 250 | 274 | 296 | 319 | 342 | 364 | 387 | 409 | | 280 | 109 | 121 | 134 | 146 | 158 | 170 | 182 | 194 | 206 | 218 | 530 | 207 | 230 | 253 | 276 | 298 | 322 | 344 | 867 | 390 | 413 | | 285 | 111 | 124 | 136 | 148 | 161 | 173 | 185 | 198 | 210 | 222 | 535 | 209 | 232 | 255 | 278 | 301 | 325
328 | 348
352 | 371
375 | 394 | 417 | | 290
295 | 113
115 | 126
128 | 139
141 | 151 | 164 | 176 | 189
192 | 201 | 214 218 | 230 | 540
545 | 213 | 287 | 260 | 283 | 307 | 331 | 355 | 378 | 402 | 425 | | 300 | 117 | 130 | 143 | 156 | 169 | 182 | 195 | 208 | 221 | 234 | 550 | 214 | 238 | 262 | 286 | 310 | 334 | 358 | 382 | 405 | 428 | | 305 | 119 | 132 | 146 | 159 | 172 | 185 | 199 | 212 | 225 | 288 | 555 | 217 | 241 | 265 | 289 | 313 | 337 | 361 | 386 | 410 | 484 | | 310 | 121 | 135 | 148 | 161 | 175 | 188 | 202 | 215 | 229 | 242 | 560 | 218
220 | 243 | 267 | 292 | 316 | 343 | 364 | 389 | 413 | 436 | | 315
320 | 123
125 | 137
139 | 150
153 | 164 | 178 | 192
194 | 205
208 | 219
222 | 232
236 | 246
250 | 565 | 222 | 247 | 272 | 296 | 321 | 346 | 870 | 396 | 420 | 444 | | 325 | 127 | 141 | 155 | 169 | 184 | 198 | 212 | 226 | 240 | 254 | 575 | 224 | 249 | 274 | 299 | 824 | 349 | 374 | 400 | 424 | 448 | | 330 | 129 | 143 | 158 | 172 | 186 | 200 | 215 | 229 | 248 | 258 | 580 | 226 | 252 | 277 | 802 | 327 | 352 | 377 | 402 | 428 | 452 | | 335 | 131 | 145 | 160 | 175 | 189 | 203 | 218 | 232 | 247 | 262 | 585 | 228 | 254
256 | 280
282 | 306
307 | 380
382 | 355
358 | 381 | 406 | 432 | 456 | | 340
345 | 133
135 | 148
150 | 162
165 | 177 | 192
195 | 206 | 221 | 236
289 | 250
254 | 266
269 | 595 | 282 | 258 | 284 | 310 | 335 | 861 | 387 | 410 | 439 | 464 | | 350 | 137 | 152 | 167 | 182 | 197 | 212 | 228 | 242 | 258 | 274 | 600 | 234 | 260 | 287 | 312 | 338 | 865 | 390 | 416 | 443 | 468 | | 855 | 139 | 154 | 169 | 185 | 200 | 215 | 281 | 245 | 262 | 277 | 605 | 236 | 262 | 289 | 315 | 341 | 868 | 393 | 419 | 446 | 472 | | 360 | 141 | 156 | 172 | 187 | 203 | 219 | 234 | 250 | 265
269 | 281 | 610 | 238 | 265
267 | 291
294 | 318
320 | 344
347 | 374 | 897
400 | 428
428 | 450 | 476 | | 365
370 | 143
145 | 158
161 | 174
177 | 190
198 | 206
209 | 222
225 | 238
240 | 254
257 | 273 | 285
289 | 615 620 | 242 | 269 | 296 | 322 | 350 | 876 | 404 | 430 | 457 | 484 | | 375 | 147 | 163 | 179 | 196 | 212 | 228 | 244 | 261 | 277 | 293 | 625 | 244 | 271 | 299 | 325 | 352 | 379 | 406 | 433 | 463 | 488 | | 380 | 148 | 165 | 181 | 198 | 214 | 230 | 247 | 264 | 280 | 297 | 630 | 246 | 274 | 300 | 328 | 355 | 383 | 410 | 437 | 465 | 492 | | 385 | 151 | 167 | 184 | 201 | 217 | 234 | 251 | 267 | 284 | 301 | 685 | 248 | 276 | 303 | 830 | 857 | 886 | 413 | 440 | 468 | 496 | | 890
895 | 152
155 | 169
172 | 186
189 | 208 | 220
223 | 237 | 254
258 | 271 275 | 288
292 | 305 | 640
645 | 250 252 | 277 | 305
308 | 333
336 | 361 | 388
392 | 416
420 | 444 | 476 | 500
504 | | 400 | 156 | 178 | 191 | 208 | 226 | 243 | 260 | 277 | 295 | 812 | 650 | 254 | 282 | 310 | 338 | 867 | 395 | 423 | 452 | 480 | 508 | | 405 | 158 | 176 | 194 | 211 | 229 | 246 | 264 | 281 | 299 | 317 | 655 | 256 | 284 | 313 | 341 | 870 | 398 | 425 | 455 | 483 | 512 | | 410 | 160 | 178 | 196 | 214 | 231 | 249 | 267 | 285 | 303 | 320 | 660 | 258 | 286 | 315 | 848 | 372 | 401 | 429 | 458 | 487 | 515 | | 415 | 162 | 180
182 | 199 | 216 | 234 | 252
255 | 270 | 289 291 | 306 | 324
328 | 665
670 | 260
262 | 289 291 | 317 | 346
349 | 375
378 | 404 | 432 | 461 | 490 | 519
524 | | | -02 | .02 | 200 | 210 | 200 | 200 | | | | 020 | 0.0 | | | 020 | | | -0. | | | | | PLEASE NOTE: Most older (updraft) engines will only use 75% or often less of the optimum 100% air flow figure. This chart is calculated at 75%, not 100%. Please bear that in mind when determining air flow. Volumetric efficiency is [probably the main factor in matching a carburetor to an engine for maximum performance.